If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+66x-768=0
a = 1; b = 66; c = -768;
Δ = b2-4ac
Δ = 662-4·1·(-768)
Δ = 7428
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7428}=\sqrt{4*1857}=\sqrt{4}*\sqrt{1857}=2\sqrt{1857}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(66)-2\sqrt{1857}}{2*1}=\frac{-66-2\sqrt{1857}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(66)+2\sqrt{1857}}{2*1}=\frac{-66+2\sqrt{1857}}{2} $
| -3(1-6x)=6x+21 | | d/3-8=-6 | | -3(4x-1)=27 | | 4x-3.5x=-9+9 | | -x-4x=2 | | X-4/4-1=x-9/4 | | 3-8x=-5 | | 3x²+x-5=0 | | 7.6/1.9=2/x | | x*1.05=100 | | 1-(1/(3t^2/3)=0 | | y=-|-2| | | -6(2m+3)=30 | | -36+4x=3(4x-1)+3x | | 3r-7=38 | | 6(3t+2)-6=-4 | | -3|k-5|=-12k-5|=-12 | | 1x+2=4x+9 | | 12-6x=-8(7+5x) | | 10=-3(x-3) | | 4y-13=7-y | | 2n+2=16= | | -3|k-5|=-12 | | 12-6x=8(7+5x) | | -24=3r-—15 | | 10y+20=10y+5 | | 4(x+3)+3(2-x)=10 | | 4=t/5.2 | | 45u^2+40=0 | | 12-6x=-3x-4-7x | | 6(x−2)=18 | | -20m=-9=75 |